Solve x^2+22x-756=0 | Microsoft Math Solver (2024)

Solve for x (complex solution)

x=\sqrt{877}-11\approx 18.61418579

x=-\left(\sqrt{877}+11\right)\approx -40.61418579

Solve x^2+22x-756=0 | Microsoft Math Solver (1)

Solve for x

x=\sqrt{877}-11\approx 18.61418579

x=-\sqrt{877}-11\approx -40.61418579

Solve x^2+22x-756=0 | Microsoft Math Solver (2)

Graph

Quiz

Quadratic Equation5 problems similar to: x ^ { 2 } + 22 x - 756 = 0

Similar Problems from Web Search

Share

x^{2}+22x-756=0

All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

x=\frac{-22±\sqrt{22^{2}-4\left(-756\right)}}{2}

This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 22 for b, and -756 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.

x=\frac{-22±\sqrt{484-4\left(-756\right)}}{2}

Square 22.

x=\frac{-22±\sqrt{484+3024}}{2}

Multiply -4 times -756.

x=\frac{-22±\sqrt{3508}}{2}

Add 484 to 3024.

x=\frac{-22±2\sqrt{877}}{2}

Take the square root of 3508.

x=\frac{2\sqrt{877}-22}{2}

Now solve the equation x=\frac{-22±2\sqrt{877}}{2} when ± is plus. Add -22 to 2\sqrt{877}.

x=\sqrt{877}-11

Divide -22+2\sqrt{877} by 2.

x=\frac{-2\sqrt{877}-22}{2}

Now solve the equation x=\frac{-22±2\sqrt{877}}{2} when ± is minus. Subtract 2\sqrt{877} from -22.

x=-\sqrt{877}-11

Divide -22-2\sqrt{877} by 2.

x=\sqrt{877}-11 x=-\sqrt{877}-11

The equation is now solved.

x^{2}+22x-756=0

Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.

x^{2}+22x-756-\left(-756\right)=-\left(-756\right)

Add 756 to both sides of the equation.

x^{2}+22x=-\left(-756\right)

Subtracting -756 from itself leaves 0.

x^{2}+22x=756

Subtract -756 from 0.

x^{2}+22x+11^{2}=756+11^{2}

Divide 22, the coefficient of the x term, by 2 to get 11. Then add the square of 11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.

x^{2}+22x+121=756+121

Square 11.

x^{2}+22x+121=877

Add 756 to 121.

\left(x+11\right)^{2}=877

Factor x^{2}+22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.

\sqrt{\left(x+11\right)^{2}}=\sqrt{877}

Take the square root of both sides of the equation.

x+11=\sqrt{877} x+11=-\sqrt{877}

Simplify.

x=\sqrt{877}-11 x=-\sqrt{877}-11

Subtract 11 from both sides of the equation.

x ^ 2 +22x -756 = 0

Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.

r + s = -22 rs = -756

Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C

r = -11 - u s = -11 + u

Two numbers r and s sum up to -22 exactly when the average of the two numbers is \frac{1}{2}*-22 = -11. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>

(-11 - u) (-11 + u) = -756

To solve for unknown quantity u, substitute these in the product equation rs = -756

121 - u^2 = -756

Simplify by expanding (a -b) (a + b) = a^2 – b^2

-u^2 = -756-121 = -877

Simplify the expression by subtracting 121 on both sides

u^2 = 877 u = \pm\sqrt{877} = \pm \sqrt{877}

Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u

r =-11 - \sqrt{877} = -40.614 s = -11 + \sqrt{877} = 18.614

The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.

x^{2}+22x-756=0

All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.

x=\frac{-22±\sqrt{22^{2}-4\left(-756\right)}}{2}

This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 22 for b, and -756 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.

x=\frac{-22±\sqrt{484-4\left(-756\right)}}{2}

Square 22.

x=\frac{-22±\sqrt{484+3024}}{2}

Multiply -4 times -756.

x=\frac{-22±\sqrt{3508}}{2}

Add 484 to 3024.

x=\frac{-22±2\sqrt{877}}{2}

Take the square root of 3508.

x=\frac{2\sqrt{877}-22}{2}

Now solve the equation x=\frac{-22±2\sqrt{877}}{2} when ± is plus. Add -22 to 2\sqrt{877}.

x=\sqrt{877}-11

Divide -22+2\sqrt{877} by 2.

x=\frac{-2\sqrt{877}-22}{2}

Now solve the equation x=\frac{-22±2\sqrt{877}}{2} when ± is minus. Subtract 2\sqrt{877} from -22.

x=-\sqrt{877}-11

Divide -22-2\sqrt{877} by 2.

x=\sqrt{877}-11 x=-\sqrt{877}-11

The equation is now solved.

x^{2}+22x-756=0

Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.

x^{2}+22x-756-\left(-756\right)=-\left(-756\right)

Add 756 to both sides of the equation.

x^{2}+22x=-\left(-756\right)

Subtracting -756 from itself leaves 0.

x^{2}+22x=756

Subtract -756 from 0.

x^{2}+22x+11^{2}=756+11^{2}

Divide 22, the coefficient of the x term, by 2 to get 11. Then add the square of 11 to both sides of the equation. This step makes the left hand side of the equation a perfect square.

x^{2}+22x+121=756+121

Square 11.

x^{2}+22x+121=877

Add 756 to 121.

\left(x+11\right)^{2}=877

Factor x^{2}+22x+121. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.

\sqrt{\left(x+11\right)^{2}}=\sqrt{877}

Take the square root of both sides of the equation.

x+11=\sqrt{877} x+11=-\sqrt{877}

Simplify.

x=\sqrt{877}-11 x=-\sqrt{877}-11

Subtract 11 from both sides of the equation.

Solve x^2+22x-756=0 | Microsoft Math Solver (2024)

FAQs

How to get maths answers online? ›

  1. Mathway. Mathway calculator is a smart math problem solver which gives you a step by step solution to a math problem. ...
  2. Photomath. It is a smartphone application which is also known as a camera calculator. ...
  3. Microsoft Math Solver. ...
  4. Cymath. ...
  5. Snapcalc. ...
  6. Quick Math. ...
  7. Symbolab. ...
  8. Chegg Math Solver.
Jan 24, 2024

What is the math website that solves any problem? ›

Wolfram|Alpha has broad knowledge and deep computational power when it comes to math. Whether it be arithmetic, algebra, calculus, differential equations or anything in between, Wolfram|Alpha is up to the challenge.

Which are the solutions of the quadratic equation x2 7x 4 7 07 0? ›

x2 = 7x + 4. -7, 0, 7, 0. Therefore, the solution is x = [7 ± √65]/2.

Which quadratic equation is equivalent to x 2 2 5 x 2 6 0? ›

Summary: x2 + 9x + 8 = 0 is the equivalent quadratic equation to (x + 2)2 + 5(x + 2) - 6 = 0.

How do I get math answers on Google? ›

Get help with math, physics and geometry

Simply type your equation or integral into the Search bar, or take a picture with Lens, to see a step-by-step explanation and solution. You can also type "math solver" to give the experience a try on desktop and coming soon, on mobile.

What is the app called that gives you math answers? ›

Photomath is known worldwide for helping millions of learners to learn, practice, and understand math – one step at a time. Scan any math problem with the Photomath app to get step-by-step explanations with accurate solutions and a variety of teacher-approved methods.

How many real solutions are there to the equation x2 − 7x 12 0? ›

👉Therefore, the solutions to the quadratic equation X² - 7x + 12 = 0 are x = 3 and x = 4.

Which is the correct solution of x2 7x 12 0? ›

The correct Answer is:3, 4.

What are the solutions of x2 =-7x-8? ›

The equation x^2 = −7x − 8 can be solved by rearranging it to x^2 + 7x + 8 = 0 and then factorizing to find the solutions x = -1 and x = -8.

What are the solutions of the equation x 4 9x 2 8 0? ›

Use u substitution to solve. Summary: The solutions of the equation x4 - 9x2 + 8 = 0 by using the substitution method are ±2√2, ±1.

Which quadratic equation is equivalent to x 4 2 -( x 4 )- 6 0? ›

Summary: The quadratic equation which is equivalent to (x - 4)2 - (x - 4) - 6 = 0 is x2 - 9x + 14 = 0.

Which expression is equivalent to x 2 2 5 x 2 6? ›

Summary: The equivalent quadratic equation to (x + 2)2 + 5(x + 2) - 6 = 0 is x2 + 9x + 8 = 0.

Where can I get math help online for free? ›

Created by experts, Khan Academy's library of trusted, standards-aligned practice and lessons covers math K-12 through early college, grammar, science, history, AP®, SAT®, and more. It's all free for learners and teachers.

Where can I ask math questions and get answers? ›

Ask an Expert
  • Ask Dr. Math - This is probably the best resource out there for anyone wanting an answer to a math question. ...
  • Ask MathNerds.com - A large group of math experts have banded together to provide this excellent service. ...
  • Gomath.com - This site has tutors available to answer your math questions for free.

Is there a website to help with math? ›

Khan Academy is a free website that offers thousands of math lessons for learners of all ages. From Pre-K to college level, courses cover various math topics. Once registered at the Khan Academy website, you can learn math for free through video content, quizzes, and practice exercises.

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Sen. Emmett Berge

Last Updated:

Views: 5345

Rating: 5 / 5 (60 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Sen. Emmett Berge

Birthday: 1993-06-17

Address: 787 Elvis Divide, Port Brice, OH 24507-6802

Phone: +9779049645255

Job: Senior Healthcare Specialist

Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.